202405161153
Status: #idea
Tags: Simple Linear Regression

Properties of Least Square Estimators in SLR

β^1=SSxySSxx$$where$SSxy=i=1nXiYinX¯Y¯=i=1nYi(XiX¯)=i=1nXi(YiY¯)=i=1n(XiX¯)(YiY¯)$and$SSxx=i=1nXi2nX¯2=i=1n(XiX¯)2$

\hat\beta_0 = \bar Y-\hat\beta_1 \bar X

ergothefittedline(estimate)is:

\hat Y = \hat \beta_0 + \hat \beta_1 X_i

\sigma^2 = \sum_{i=1} \frac{(y_i-\hat y_i)^2}{n-2} = \sum_{i=1} \frac{\varepsilon_i^2}

Alltheseestimatorsareunbiased.References