202405161153
Status: #idea
Tags: Simple Linear Regression
Properties of Least Square Estimators in SLR
\hat\beta_0 = \bar Y-\hat\beta_1 \bar X
\hat Y = \hat \beta_0 + \hat \beta_1 X_i
\sigma^2 = \sum_{i=1} \frac{(y_i-\hat y_i)^2}{n-2} = \sum_{i=1} \frac{\varepsilon_i^2}